Barkaoui, M., Berger, J., & Boukhtouta, A. (2015). Customer satisfaction in dynamic vehicle routing problem with time windows. Applied Soft Computing, 35, 423-432.
Bell, J. E., & McMullen, P. R. (2004). Ant colony optimization techniques for the vehicle routing problem. Advanced engineering informatics, 18(1), 41-48.
Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems. European journal of operational research, 202(1), 8-15. https://doi.org/10.1016/j.ejor.2009.04.024ttps
Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art classification and review. Computers & Industrial Engineering, 99, 300-313.
Cai, X., Chen, J., Xiao, Y., Xu, X., & Yu, G. (2013). Fresh-product supply chain management with logistics outsourcing. Omega, 41(4), 752-765.
Cordeau, J. F., G. Laporte, M. W. P. Savelsbergh, & D. Vigo. (2007). Chapter 6 Vehicle Routing. Handbooks in Operations Research & Management Science 14: 367–428. https://doi.org/10.1016/S0927-0507(06)14006-2
Dai, B., & Chen, H. (2012). Profit allocation mechanisms for carrier collaboration in pickup and delivery service. Computers & Industrial Engineering, 62(2), 633-643
Dai, B., Chen, H., & Yang, G. (2014). Price-setting based combinatorial auction approach for carrier collaboration with pickup and delivery requests. Operational Research, 14(3), 361-386. https://doi.org/10.1007/s12351-014-0141-1
Dror, M., & Trudeau, P. (1989). Savings by split delivery routing. Transportation Science, 23(2), 141-145.
Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering, 57(4), 1472-1483. https://doi.org/10.1016/j.cie.2009.05.009
Farahani, P., Grunow, M., & Günther, H. O. (2012). Integrated production and distribution planning for perishable food products. Flexible services and manufacturing journal, 24(1), 28-51.
Fernández, E., Roca-Riu, M., & Speranza, M. G. (2018). The shared customer collaboration vehicle routing problem. European Journal of Operational Research, 265(3), 1078-1093.
Fraley, S., Oom, M., Terrien, B., & Date, J. (2006). Design of experiments via Taguchi methods: orthogonal arrays. The Michigan chemical process dynamic and controls open text book, USA, vol 2. No. 3. p 4.
Jiang, Y., Bian, B., & Liu, Y. (2020). Integrated multi-item packaging and vehicle routing with split delivery problem for fresh agri-product emergency supply at large-scale epidemic disease context. Journal of Traffic and Transportation Engineering (English Edition).
Gansterer, M., & Hartl, R. F. (2018). Collaborative vehicle routing: a survey. European Journal of Operational Research, 268(1), 1-12.
Gansterer, M., Küçüktepe, M., & Hartl, R. F. (2017). The multi-vehicle profitable pickup and delivery problem. OR Spectrum, 39(1), 303-319. https://doi.org/10.1007/s00291-016-0454-y
Ghilas, V., Demir, E., & Van Woensel, T. (2016). A scenario-based planning for the pickup and delivery problem with time windows, scheduled lines and stochastic demands. Transportation Research Part B: Methodological, 91, 34-51. https://doi.org/10.1016/j.trb.2016.04.015
Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9-28.
Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of operational research, 134(1), 1-16.
Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73 https://doi.org/10.1016/j.jclepro.2017.01.001
Hu, H., Zhang, Y., & Zhen, L. (2017). A two-stage decomposition method on fresh product distribution problem. International Journal of Production Research, 1-24.
Iassinovskaia, G., Limbourg, S., & Riane, F. (2017). The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains. International Journal of Production Economics, 183, 570-582.
Kachitvichyanukul, V., Sombuntham, P., & Kunnapapdeelert, S. (2015). Two solution representations for solving multi-depot vehicle routing problem with multiple pickup and delivery requests via PSO. Computers & Industrial Engineering, 89, 125-136. https://doi.org/10.1016/j.cie.2015.04.011
Karaesmen, I. Z., Scheller–Wolf, A., & Deniz, B. (2011). Managing perishable and aging inventories: review and future research directions. In Planning production and inventories in the extended enterprise (pp. 393-436). Springer US
Laporte, G. (2009). Fifty years of vehicle routing. Transportation science, 43(4), 408-416.
Li, Y., Chen, H., & Prins, C. (2016). Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests. European Journal of Operational Research, 252(1), 27-38 https://doi.org/10.1016/j.ejor.2015.12.032
Nahmias, S. (1982). Perishable inventory theory: A review. Operations research, 30(4), 680-708.
Nowak, M., Ergun, Ö., & White III, C. C. (2008). Pickup and delivery with split loads. Transportation Science, 42(1), 32-43.
Osvald, A., & Stirn, L. Z. (2008). A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food. Journal of food engineering, 85(2), 285-295.
Padmanabhan, B., Huynh, N., Ferrell, W., & Badyal, V. (2020). Potential benefits of carrier collaboration in vehicle routing problem with pickup and delivery. Transportation Letters, 1-16
Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery models part ii: Transportation between pickup and delivery locations. Journal für Betriebswirtschaft, 58(2), 81-117.
Rahimi, M., Baboli, A., & Rekik, Y. (2014, December). A bi-objective inventory routing problem by considering customer satisfaction level in context of perishable product. In Computational Intelligence in Production and Logistics Systems (CIPLS), 2014 IEEE Symposium on (pp. 91-97). IEEE.
Song, B. D., & Ko, Y. D. (2016). A vehicle routing problem of both refrigerated-and general-type vehicles for perishable food products delivery. Journal of Food Engineering, 169, 61-71.
Vaziri, S., Etebari, F., & Vahdani, B. (2019). Development and optimization of a horizontal carrier collaboration vehicle routing model with multi-commodity request allocation. Journal of Cleaner Production, 224, 492-505.
Verdonck, L., Caris, A. N., Ramaekers, K., & Janssens, G. K. (2013). Collaborative logistics from the perspective of road transportation companies. Transport Reviews, 33(6), 700-719.
Wang, C., Zhao, F., Mu, D., & Sutherland, J. W. (2013, September). Simulated annealing for a vehicle routing problem with simultaneous pickup-delivery and time windows. In IFIP international conference on advances in production management systems (pp. 170-177). Springer, Berlin, Heidelberg.
Wang, H. F., & Chen, Y. Y. (2013). A coevolutionary algorithm for the flexible delivery and pickup problem with time windows. International Journal of Production Economics, 141(1), 4-13.
Wang, X., Wang, M., Ruan, J., & Zhan, H. (2016). The Multi-objective Optimization for Perishable Food Distribution Route Considering Temporal-spatial Distance. Procedia Computer Science, 96, 1211-1220.
Wang, Y., Ma, X. L., Lao, Y. T., Yu, H. Y., & Liu, Y. (2014). A two-stage heuristic method for vehicle routing problem with split deliveries and pickups. Journal of Zhejiang University SCIENCE C, 15(3), 200-210.
Wang, Y., Ma, X., Xu, M., Liu, Y., & Wang, Y. (2015). Two-echelon logistics distribution region partitioning problem based on a hybrid particle swarm optimization–genetic algorithm. Expert Systems with Applications, 42(12), 5019-5031.
Wu, Q., Mu, Y., & Feng, Y. (2015). Coordinating contracts for fresh product outsourcing logistics channels with power structures. International Journal of Production Economics, 160, 94-105.
Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2015). The load-dependent vehicle routing problem and its pick-up and delivery extension. Transportation Research Part B: Methodological, 71, 158-181. https://doi.org/10.1016/j.trb.2014.11.004
Zhang, Y., & Chen, X. D. (2014). An Optimization Model for the Vehicle Routing Problem in Multi-product Frozen Food Delivery. Journal of applied research and technology, 12(2), 239-250.
Zhang, W., Chen, Z., Zhang, S., Wang, W., Yang, S., & Cai, Y. (2020). Production, 274, 122593.