نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد رشته مدیریت صنعتی، دانشکدگان مدیریت،دانشگاه تهران، تهران، ایران

2 استاد گروه مدیریت صنعتی،دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران

3 دانشیار گروه مدیریت صنعتی،دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران

چکیده

در عصر حاضر تأثیر هوش مصنوعی در همه صنایع ازجمله صنعت بیمه بر کسی پوشیده نیست. بهره‌گیری از هوش مصنوعی به صنعت بیمه کمک می‌کند تا خطرات مختلف را پیش‌بینی کرده و به‌این‌ترتیب برنامه‌های مناسب برای مدیریت آن را اجرا کند. تحقیق حاضر باهدف شناسایی و رتبه‌بندی کاربردهای هوش مصنوعی ارتقادهنده کیفیت خدمات بیمه‌ای انجام شد. سازمان تأمین اجتماعی به‌عنوان موردمطالعه انتخاب شده است. این تحقیق بر اساس هدف کاربردی است و به لحاظ ماهیت و روش از نوع تحقیقات اکتشافی است و ازلحاظ زمانی پژوهش تک مقطعی است. ابتدا با استفاده از ادبیات موضوع کاربردهای مختلف هوش مصنوعی در صنعت بیمه استخراج‌شده و در گام دوم این داده‌ها با نظر خبرگان تکمیل‌شده و در مرحله بعد با استفاده از ابزار پرسشنامه و روش تصمیم‌گیری چند شاخصه رتبه‌بندی شاخص‌ها انجام شده است. برای تحلیل داده‌ها، ابتدا از روش فار برای وزن دهی شاخص‌ها استفاده‌شده، سپس ماتریس تصمیم تشکیل‌شده و با استفاده از روش مارکوس، گزینه‌ها رتبه‌بندی شد. طبق نتایج پژوهش از میان کاربردهای هوش مصنوعی در صنعت بیمه گروه «تحلیل داده‌ها و پردازش و تجزیه» رتبه یک و «خدمات مشتری» رتبه سه و «امنیت سایبری» و «اتوماسیون» هر دو رتبه چهار را به خود اختصاص دادند. لذا این پژوهش نیز توجه به آماده‌سازی زمینه برای تحلیل داده‌های حجیم را برجسته می‌سازد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identification and Ranking Applications of AI That Improve the Quality of Insurance Services.

نویسندگان [English]

  • Yeganeh Kamranmehr 1
  • Ezzatollah Asgharizadeh 2
  • Fatemeh Saghafi 3

1 Master's student in Quality and Productivity Management, University of Tehran, Tehran, Iran

2 Professor, Department of Industrial Management, Faculty of management, University of Tehran, Tehran, Iran

3 Associate Professor, College of Management, University of Tehran, Tehran, Iran

چکیده [English]

In recent years, artificial intelligence (AI) has emerged as a transformative force across industries, offering unprecedented capabilities in data analysis, process automation, and customer engagement. The insurance sector, inherently data-driven and operationally complex, stands to benefit significantly from AI adoption. While insurers in developed markets have begun to integrate these technologies strategically, organizations in emerging economies like Iran continue to face structural challenges in implementation. This study explores the potential of AI in improving the quality of insurance services within Iran’s Social Security Organization (SSO). Through an empirical model grounded in multi-criteria decision-making, the research identifies twenty-two AI-driven applications and evaluates their impact using expert feedback. By applying FARE (Fuzzy Analytic Relationship) for indicator weighting and MARCOS (Measurement Alternatives and Ranking According to Compromise Solution) for application prioritization, the study offers a structured pathway for digital transformation. The findings suggest that AI applications focused on data analysis and intelligent processing hold the highest potential for service enhancement. In contrast, functions like cybersecurity and customer interaction, while essential, play more supportive roles. This research contributes to the growing body of knowledge by contextualizing AI integration within Iran’s insurance landscape and proposing a practical decision-making framework for public sector innovation.
Introduction
Artificial intelligence has become more than a technological trend—it is now a cornerstone of innovation in finance, healthcare, manufacturing, and insurance. As organizations contend with increasing volumes of data and rising expectations for personalized, efficient services, AI offers tools that not only automate routine tasks but also augment strategic decision-making. Within the insurance sector, AI applications span a wide array of functionalities, including predictive underwriting, fraud detection, customer service automation, and real-time risk evaluation. These advancements are reshaping insurance from a reactive, compensation-focused industry to a proactive, preventive service model. In Iran, despite visible interest and scattered efforts, the deployment of AI remains unsystematic and largely unstructured. The Social Security Organization, covering more than 45 million individuals, is a prime candidate for AI transformation. Yet the absence of a prioritized roadmap has hindered progress. This study responds to that gap by asking: Which AI applications should the SSO pursue to maximize improvements in service quality?
Research Background
Globally, the insurance industry has witnessed a surge in AI adoption. Companies such as AXA and Allstate utilize machine learning models to personalize policies and predict claims. Progressive and Lemonade implement chatbots and natural language processing to accelerate customer support. Zurich Insurance leverages robotic process automation to reduce operational latency, while Swiss Re and Munich Re deploy anomaly detection algorithms to prevent fraud and improve pricing accuracy.
These examples underscore the strategic role AI plays, not only in optimizing internal processes but also in transforming customer engagement. International literature consistently identifies several application domains: predictive analytics, cybersecurity, automated claims processing, customer personalization, and intelligent document handling. However, within the Iranian context, existing studies have tended to focus narrowly—often examining isolated applications or technologies without offering a comprehensive prioritization framework. Moreover, public insurance institutions lack access to sector-specific evaluations that link technology capabilities to strategic outcomes like customer retention, operational cost reduction, and service satisfaction. This research seeks to bridge that divide by evaluating the functional relevance and strategic value of AI applications from an organizational perspective.
Method
The study adopts a quantitative and applied research design, supported by a positivist philosophical foundation. It uses a single cross-sectional survey to collect expert judgments and applies a hypothetico-deductive approach for analysis. The sample consists of ten carefully selected professionals affiliated with the SSO, each with proven expertise in insurance and artificial intelligence. These experts evaluated twenty-two performance indicators extracted from a comprehensive review of literature and industry practice. Indicators included operational metrics (e.g., fraud detection efficiency, speed of data processing), service quality measures (e.g., customer satisfaction, claim resolution accuracy), and strategic outcomes (e.g., risk prediction, loss minimization). To quantify the relative importance of each indicator, the FARE method was used. This enabled the assignment of nuanced weights based on expert consensus. Subsequently, each AI application was evaluated using the MARCOS ranking methodology, which integrates weighted scores with ideal and non-ideal performance scenarios to establish priority levels. This hybrid decision-making model ensures that each application is assessed on technical feasibility as well as on its strategic alignment with service enhancement goals.
Discussion and Results
The analysis revealed clear priorities among the AI applications considered. The domains of data analysis and processing intelligence emerged as the most impactful in improving insurance service quality. These functions directly contribute to accurate risk assessment, efficient pricing, and streamlined claims management—areas that hold the greatest operational and strategic significance for public insurers. Applications such as predictive modeling, historical data mining, and intelligent classification of new information received the highest scores from experts. These tools allow insurance entities to transition from static, rule-based decision-making toward dynamic, data-driven strategies that respond to real-time conditions.
In contrast, applications within cybersecurity and customer services, while essential, were deemed supportive rather than primary. Technologies such as chatbots, fraud detection systems, and encryption tools provide safeguards and enhance user experience but rely heavily on underlying analytical systems to deliver consistent value. One of the study’s conceptual contributions lies in distinguishing between direct AI applications and indirect effects, which enhance service through ancillary functions. This distinction has practical implications for implementation, especially in resource-constrained environments where prioritization is critical.
Furthermore, the study highlighted a significant gap between global best practices and the current technological posture of Iran’s insurance sector. While international organizations experiment with generative AI and blockchain–AI hybrids, domestic insurers have yet to establish basic integration frameworks. This research, therefore, not only ranks applications but also serves as a blueprint for catching up with global innovation trajectories.
Conclusion
Artificial intelligence is no longer optional; it’s central to the future of insurance. For Iran's Social Security Organization, strategic investment in AI must begin with data analytics and intelligent processing, which offer the most immediate gains in speed, accuracy, and service quality. Applications in cybersecurity and customer service are also valuable, but their full potential depends on a solid analytical foundation. This study provides more than a ranking; it offers a practical mindset shift, from reactive service delivery to proactive, data-driven decision-making. The proposed framework is adaptable across sectors and scalable with future technological advances. Real success, however, hinges not on algorithms alone, but on how thoughtfully they are embedded into human-centered systems led by vision, collaboration, and continuous learning.

کلیدواژه‌ها [English]

  • Artificial intelligence
  • Insurance
  • Quality of service
  • New Technology
  1. 1. رجب‌زاده، علی، قاسمی، احمدرضا، آذر، عادل و حسینی، روح‌الله. (1397). تبیین و ارزیابی شاخص‌های اولویت‌گذاری پروژه‌های صنعتی به‌منظور برنامه‌ریزی بهینه در اقتصاد. فصلنامه علمی پژوهش‌های اقتصاد صنعتی، 2(3)، 23-44. https:/‌/‌doi.org/‌10.30473/‌indeco.2019.28952.1064
  2. یزدان‌پرست، سید مرتضی، جامی پور، مونا و جعفری، سید محمدباقر. (1401). شناسایی و اولویت‌بندی کاربردهای هوش مصنوعی در بازاریابی برخط. کاوش‌های مدیریت بازرگانی، 14(28), 103-137. https:/‌/‌doi.org/‌10.22034/‌jbar.2022.15783.3850
  3. پازوکی، پریسا و صراف، فاطمه و جعفری، محبوبه و باغانی، علی (۱۴۰۰) کاربرد هوش مصنوعی در شناسایی عوامل عملکردی مؤثر بر سلامت مالی. فصلنامه مهندسی مالی و مدیریت اوراق بهادار، دوره: 12، شماره: 48. https:/‌/‌sanad.iau.ir/‌fa/‌Article/‌1078874
  4.  Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. A. A., & Dwivedi, Y. K. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge, 8(1), 100333. https:/‌/‌doi.org/‌10.1016/‌j.jik.2023.100333
  5. (2024). 10 applications of generative AI in insurance. Retrieved July 22, 2024, from https:/‌/‌research.aimultiple.com/‌generative-ai-in-insurance
  6. Acosta-Prado, J. C., Hernández-Cenzano, C. G., Villalta-Herrera, C. D., & Barahona-Silva, E. W. (2024). Three Horizons of Technical Skills in Artificial Intelligence for the Sustainability of Insurance Companies. Administrative Sciences, 14(9), 190. https:/‌/‌doi.org/‌10.3390/‌admsci14090190
  7. Ahmad, H., Gulzar, M. M., Aziz, S., Habib, S., & Ahmed, I. (2024). AI-based anomaly identification techniques for vehicles communication protocol systems: Comprehensive investigation, research opportunities and challenges. Internet of Things, https:/‌/‌doi.org/‌10.1016/‌j.iot.2024.101245
  8. Alkhelb, A. A., & Alshagrawi, S. (2025). Role of artificial intelligence in healthcare insurance: systematic literature review. Exploration of Digital Health Technologies, 3, 101145. https:/‌/‌doi.org/‌10.37349/‌edht.2025.101145
  9. Clemente, G. P., Della Corte, F., Savelli, N., & Zappa, D. (2023). Special Issue “Data Science in Insurance”. Risks, 11(5), 80 https:/‌/‌doi.org/‌10.3390/‌risks11050080
  10. Djenna, A., Bouridane, A., Rubab, S., & Marou, I. M. (2023). Artificial intelligence-based malware detection, analysis, and mitigation. Symmetry, 15(3), 677. https:/‌/‌doi.org/‌10.3390/‌sym15030677
  11. Eling, M., Nuessle, D., & Staubli, J. (2022). The impact of artificial intelligence along the insurance value chain and on the insurability of risks. The Geneva Papers on Risk and Insurance-Issues and Practice, 47(2), 205-241.https:/‌/‌doi.org/‌10.1057/‌s41288-020-00201-7
  12. Fong, P. H. Y. (2023). Feasibility of artificial intelligence in improving sales and service of insurance agents in the life insurance industry of Malaysia (Doctoral dissertation, UTAR).‏‏ http:/‌/‌eprints.utar.edu.my/‌id/‌eprint/‌5693
  13. Hassan, B. (2022). Artificial Intelligence in Social Security: Opportunities and Challenges. Журнал исследований социальной политики, 20(3), 407-418.https:/‌/‌doi.org/‌10.17323/‌727-0634-2022-20-3-407-418
  14. Iftikhar, P., Kuijpers, M. V., Khayyat, A., Iftikhar, A., & De Sa, M. D. (2020). Artificial intelligence: a new paradigm in obstetrics and gynecology research and clinical practice. Cureus, 12(2), 15.https:/‌/‌doi.org/‌10.7759/‌cureus.7124
  15. Klaus, D., Zaccarine, S., Pischulti, P., & Rollock, A. (2020, July). Establishing Assessment Criteria for Intelligent Infusion of “Smart Systems” into a Space Habitat. International Conference on Environmental Systems. https:/‌/‌hdl.handle.net/‌2346/‌86403
  16. Lim, E. (2022). B2B artificial intelligence transactions: A framework for assessing commercial liability. Singapore Journal of Legal Studies, 46-74.https:/‌/‌doi.org/‌10.2139/‌ssrn.4025415
  17. Ma, H. (2024). Research on the Application of Artificial Intelligence in Commercial Auto Insurance. Journal of Artificial Intelligence,7(3), 14. https:/‌/‌doi.org/‌10.23977/‌jaip.2024.070309
  18. Mullen, P. M. (2003). Delphi: myths and reality. Journal of health organizationandmanagement,17(1),37-52..https:/‌/‌doi.org/‌10.1108/‌14777260310469319
  19. Mohammadifar, A., Gholami, H., & Golzari, S. (2023). Novel integrated modelling based on multiplicative long short-term memory (mLSTM) deep learning model and ensemble multi-criteria decision making (MCDM) models for mapping flood risk. Journal of Environmental Management,345,  118838https:/‌/‌doi.org/‌10.1016/‌j.jenvman.2023.118838.
  20. Mahata, N. (2024). Artificial Intelligence and Machine Learning: A New Era in Technology. Journal of Research in Engineering and Computer Sciences, 2(2), 20–22. Retrieved July 22, 2025, from https:/‌/‌hspublishing.org/‌JRECS/‌article/‌download/‌384/‌337/‌533
  21. McKinsey & Company. (2020). Insurance 2030: The impact of AI on the future of insurance. Retrieved from [https:/‌/‌www.mckinsey.com] Ernst & Young. (2024). Generative AI in insurance. Retrieved from [https:/‌/‌www.ey.com](https:/‌/‌www.ey.com/‌content/‌dam/‌ey-unified-site/‌ey-com/‌en-gl/‌insights/‌insurance/‌documents/‌ey-gl-generative-ai-in-insurance-05-2024.pdf) https:/‌/‌www.mckinsey.com
  22. Neha, V., et. al., (2025). Explainable Artificial Intelligence (XAI) in Insurance, 2025 International Conference on Pervasive Computational Technologies, ICPCT 2025Pages 305 - 3102025 2025 International Conference on Pervasive Computational Technologies, ICPCT 2025Greater Noida 8 to 9 February 2025Code 208025. https:/‌/‌doi.org/‌10.1109/‌ICPCT64145.2025.10939062
  23. Hendrix, N., Veenstra, D. L., Cheng, M., Anderson, N. C., & Verguet, S. (2022). Assessing the economic value of clinical artificial intelligence: challenges and opportunities. Value in Health, 25(3), 331-339. https:/‌/‌doi.org/‌10.1016/‌j.jval.2021.08.015
  24. O'Brien, S. (2021). The criminal act of committing insurance fraud: The challenges facing insurers when detecting and preventing insurance fraud (Doctoral dissertation, Dublin Business School). Retrieved July 22, 2024, from https:/‌/‌esource.dbs.ie/‌server/‌api/‌core/‌bitstreams/‌ea70dfed-c9f7-4e5f-bd12-a6d7fb67f384/‌content
  25. Pourghasemi, H. R., Amiri, M., Edalat, M., Ahrari, A. H., Panahi, M., Sadhasivam, N., & Lee, S. (2020). Assessment of urban infrastructures exposed to flood using susceptibility map and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1923-1937. https:/‌/‌doi.org/‌10.1109/‌JSTARS.2020.3045278
  26. Rane, N., Choudhary, S., & Rane, J. (2024). Artificial Intelligence-driven corporate finance: enhancing efficiency and decision-making through machine learning, natural language processing, and robotic process automation in corporate governance and sustainability. Natural Language Processing, and Robotic Process Automation in Corporate Governance and Sustainability (February 8, 2024). https:/‌/‌doi.org/‌10.48185/‌sebr.v5i2.1050
  27. Rao, D., & Pathak, P. (2022, October). Evolving robotic process automation (RPA) & artificial intelligence (AI) in response to Covid-19 and its future. In AIP Conference Proceedings (Vol. 2519, No. 1). AIP Publishing..https:/‌/‌doi.org/‌10.1063/‌5.0109615
  28. Selvakumar, L., & Shanmugam, V. (2024, June). Impact of artificial intelligence and machine learning in the insurance industry: A bibliometric analysis 2000-2022. In AIP Conference Proceedings(Vol. 3112, No. 1). AIP Publishing. https:/‌/‌doi.org/‌10.1063/‌5.0211582
  29. Sasubilli, S. M., Kumar, A., & Dutt, V. (2020, June). Machine learning implementation on medical domain to identify disease insights using TMS. In 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE) (pp. 1-4). IEEE..https:/‌/‌doi.org/‌10.1109/‌ICACCE49060.2020.9154960
  30. Savanur, A., Niranjanamurthy, M., Amulya, M. P., & Dayananda, P. (2021, July). Application of Chatbot for consumer perspective using Artificial Intelligence. In 2021 6th International Conference on Communication and Electronics Systems (ICCES) (pp. 1479-1483). IEEE. https:/‌/‌doi.org/‌10.1109/‌ICCES51350.2021.9488990
  31. Shah, S., Ghomeshi, H., Vakaj, E., Cooper, E., & Fouad, S. (2023). A review of natural language processing in contact centre automation. Pattern Analysis and Applications, 26(3), 823-846. https:/‌/‌doi.org/‌10.1007/‌s10044-023-01182-8
  32. Singh, S. K., & Chivukula, M. (2020). A commentary on the application of Artificial Intelligence in the insurance industry. Trends in Artificial Intelligence, 4(1), 75-79. https:/‌/‌doi.org/‌10.36959/‌643/‌305
  33. Shabbir, J., & Anwer, T. (2018). Artificial intelligence and its role in near future.arXivpreprintarXiv:1804.01396.
    https:/‌/‌doi.org/‌10.48550/‌arXiv.1804.01396
  34. Trawnih, A., Al-Masaeed, S., Alsoud, M., & Alkufahy, A. (2022). Understanding artificial intelligence experience: A customer perspective. International Journal of Data and Network Science, 6(4), 1471-1484. https:/‌/‌doi.org/‌10.5267/‌j.ijdns.2022.5.004
  35. Yeh, W. C., Kuo, C. Y., Chen, J. M., Ku, T. H., Yao, D. J., Ho, Y. C., & Lin, R. Y. (2024). Pioneering Data Processing for Convolutional Neural Networks to Enhance the Diagnostic Accuracy of Traditional Chinese Medicine Pulse Diagnosis for Diabetes. Bioengineering, 11(6), 561.‏‏ https:/‌/‌doi.org/‌10.3390/‌bioengineering11060561
  36. Zarifis, A., Holland, C. P., & Milne, A. (2023). Evaluating the impact of AI on insurance: The four emerging AI-and data-driven business models. Emerald Open Research, 1(1), 12-25.. https:/‌/‌doi.org/‌10.1108/‌EOR-01-2023-0001
  37. Zhang, J., Pan, L., Han, Q. L., Chen, C., Wen, S., & Xiang, Y. (2021). Deep learning based attack detection for cyber-physical system cybersecurity: A survey. IEEE/‌CAA Journal of Automatica Sinica, 9(3), 377-391. https:/‌/‌doi.org/‌10.1109/‌JAS.2021.1004261
  38. Zanke, P., & Sontakke, D. (2021). Artificial Intelligence Applications in Predictive Underwriting for Commercial Lines Insurance. Advances in Deep Learning Techniques, 1(1), 23–38. Retrieved July 22, 2024, from https:/‌/‌thesciencebrigade.com/‌adlt/‌article/‌view/‌181