نویسنده

استادیار دانشگاه آزاد اسلامی، واحد قزوین، گروه مدیریت صنعتی، قزوین، ایران

چکیده

این مقاله به معرفی یک مدل ریاضی چند‌هدفه جهت تخصیص افزونگی در سیستم‌های تولیدی می پردازد. در بسیاری از خطوط تولید و مونتاژ در صنعت، توابع توزیع ورود قطعات، مدت زمان‌های پردازش، مدت زمان تابازمانی ماشین‌ها و مدت زمانهای تعمیر از توابع توزیع عمومی تبعیت میکنند. روش پیشنهادی این مقاله با استفاده از رویکرد تلفیقی شبیهسازی کامپیوتری و متدولوژی سطح پاسخ، قابلیت درنظرگیری پارامترهای زمانی مبتنی بر توابع توزیع عمومی در خطوط تولید را داراست. در مدل ریاضی این مقاله سه هدف حداکثرکردن نرخ تولید، حداقل‌کردن هزینه‌ها و حداکثر‌کردن کیفیت محصولات در‌نظر‌گرفته شده‌است. جهت حل مدل ریاضی چند‌هدفه پیشنهادی، از دو الگوریتم فراابتکاری تکاملی الگوریتم ژنتیک با مرتب‌سازی نامغلوب و بهینه‌سازی ازدحام ذرات چند‌هدفه استفاده شده‌است. نتابج محاسباتی مؤثر‌بودن دو الگوریتم فوق در تولید جواب‌های نامغلوب برای مسئله تخصیص افزونگی در سیستم‌های تولیدی نامطمئن را نشان می‌دهد. به‌علاوه، نتایج حاصل از مقایسه این دو الگوریتم نشان‌دهنده کیفیت بالاتر جواب‌های الگوریتم ژنتیک با مرتب‌سازی نامغلوب در این مسئله است. 

کلیدواژه‌ها

عنوان مقاله [English]

A New Hybrid Method for Redundancy Allocation in Production Systems using Modified NSGA-II and MOPSO Algorithm

نویسنده [English]

  • Ali Mohtashami*

Assistant Professor, Department of industrial management, Faculty of management, Qazvin branch, Islamic Azad University, Qazvin, Iran

چکیده [English]

This paper presents a multi-objective mathematical model for redundancy allocation in production systems. In many of the production and assembly lines, process times, time between failures and repaired times are generally distributed. The proposed method of this paper is able to consider time dependent parameters as general distribution functions by using the hybrid approach of simulation and response surface methodology. The objectives of the mathematical model are maximizing production rate, minimizing total cost and maximizing quality. In order to solve the proposed mathematical model, non-dominated sorting genetic algorithm and multiple objective particle swarm optimization are used. Numerical results indicate the effectiveness of both algorithms for generating non-dominated solutions. Moreover, comparative results indicate the superiority of the Non-dominated sorting genetic algorithm.

کلیدواژه‌ها [English]

  • Production line
  • Response Surface Methodology
  • Simulation
  • Non-dominated sorting genetic algorithm
  • Multiple objective particle swarm optimization
 
Burman, M. H. (1995). New results in flow line analysis. MIT, Cambridge, MA.
Dallery Y., Gershwin S.B. (1992). Manufacturing flow line systems: A review of models and analytical results: Queuing systems theory and applications. special issue on queuing models of manufacturing systems. 12 (2), 3-94.
Dallery, Y., Frein, Y. (1998). An efficient method to determine the optimal configuration of a flexible manufacturing system. Annals of Operations Research, 15. 207 – 225.
Deb K. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions Evoloutionary Computations. 6, 182–97.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley and Sons, New York.
Deb, K., Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex Systems. 9, 115–148.
Deb, K., Goyal, M. (1996). A combined genetic adaptive search (GeneAS) for engineering design. Computer Science Informations. 26, 30–45.
Garg, H., Rani, M., Sharma, S. (2013). An efficient two phase approach for solving reliability-redundancy allocation problem using artificial bee colony technique. Computers & Operations Research. 40 (12), 2961-2969.
Gershwin S.B., Schor J.E. (2000). Efficient algorithms for buffer space allocation. Operations research. 93 (3), 117 – 144.
He, P., Wu, K., Xu, J., Wen, J., Jiang, Z. (2013). Multilevel redundancy allocation using two dimensional arrays encoding and hybrid genetic algorithm. Computers & Industrial Engineering. 64 (1), 69-83.
Kleijnen, J. P. C. (1979). Regression meta-models for generalizing simulation results. IEEE SMC-9. 2, 93–96.
Kleijnen, J. P. C., Sargent, R. G. (2000). A methodology for fitting and validating metamodels in simulation. European Journal of Operations Research, 120, 14-29.
Kumar, R., Izui, K., Yoshimura, M., Nishiwaki, Sh. (2009). Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization, Reliability Engineering and System Safety. 94 (4), 891-904.
Kuo, W., Prasad, V.R. (2000). An annotated overview of system-reliability optimization. IEEE transactions on reliability. 49 (2), 176-187.
Kuo, W., Prasad, V.R., Tillman, F.A., Hwang, C.L. (2001). Optimal reliability design: fundamentals and applications. Cambridge University, London.
Kuo, W., Wan, R. (2007). Recent advances in optimal reliability allocation. IEEE transactions on systems. Man and cybernetics, Part A 37 (2), 143-156.
Lavoie, P., Kenne, J., Gharbi, A. (2009). Optimization of production control policies in failure-prone homogenous transfer lines. IEEE Transactions. 41, 209-222.
Montgomery, D. (2001). Design and analysis of experiments. John Wiley and Sons, New York.
Nahas N., Nourelfath, M., Ait-Kadi D. (2007). Coupling ant colony and the degraded ceiling algorithm for the redundancy allocation problem of series-parallel systems. Reliability Engineering and System Safety. 92 (2), 211-222.
Ouzineb, M., Nourelfath, M., Gendreau, M. (2008). Tabu search for the redundancy allocation problem of homogenous series-parallel multi-state systems. Reliability Engineering and System Safety. 93 (8), 1257-1272.
Parsopoulos, K. E., Vrahatis, M. N. (2002). Particle swarm optimization method in multiobjective problems. In Proceedings of the 2002 ACM symposium on applied computing, Madraid, Spain, 603–607.
Ravi, V., Reddy, P.J. (2000). Zimmermann, H. Fuzzy global optimization of complex system reliability. IEEE transactions on Fuzzy Systems 8 (3), 241-248.
Tan, K. C., Lee, T. H., Khor, E. F. (2001). Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. In Proceeding of IEEE congress on the evolutionary computation, Korea, Seoul, 979–986.
Veldhuizen, D. (1999). Multiobjective evolutionary algorithms: Classification, analyses, and new innovations. Dayton, Ohio: Department of Electrical and Computer Engineering Air Force Institute of Technology.
Yeh, W.C. (2009). A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert systems with applications. 36 (5), 9192-9200.
Yun, W.Y., Kim, J.W. (2004). Multi-level redundancy optimization in series systems. Computers and Industrial Engineering. 46 (2), 337-346.
Yun, W.Y., Song, Y.M., Kim, H.G. (2007). Multiple multi-level redundancy allocation in series systems. Reliability Engineering and System Safety. 92 (3), 308-313.
Zhao, P., Chan, P., Li, L., Keung Tony Ng, H. (2013). On allocation of redundancies in two-component series systems. Operations research letters. 41 (6), 690-693.
Zoulfaghari, H., Hamadani, A., Ardakan, M. (2014). Bi-objective redundancy allocation problem for a system with mixed repairable and non-repairable components. ISA Transactions. 53 (1), 17-24.