مدیریت عملکرد
لیلا پرهیزکار میاندهی؛ علیرضا امیرتیموری؛ سهراب کردرستمی؛ منصور صوفی
چکیده
اگر قیمت های خروجی های واحد های تحت ارزیابی مشخص باشد ، ارزیابی کارایی درآمد واحد ها یکی از مهم ترین ارزیابی هایی است که می تواند اطلاعات ارزشمندی را در مورد واحدها ارائه دهد . در این مقاله، ابتدا تعریف جدیدی از اندازه مقیاس بهینه ، براساس بیشینه سازی اندازه متوسط کارایی درآمد ارائه می شود و سپس اندازه متوسط کارایی درآمد ...
بیشتر
اگر قیمت های خروجی های واحد های تحت ارزیابی مشخص باشد ، ارزیابی کارایی درآمد واحد ها یکی از مهم ترین ارزیابی هایی است که می تواند اطلاعات ارزشمندی را در مورد واحدها ارائه دهد . در این مقاله، ابتدا تعریف جدیدی از اندازه مقیاس بهینه ، براساس بیشینه سازی اندازه متوسط کارایی درآمد ارائه می شود و سپس اندازه متوسط کارایی درآمد در دو فضای محدب و نامحدب تعریف می شود که این اندازه، مستقل از بازده به مقیاس و فرض یکسان بودن بردار قیمت های ورودی و خروجی واحد ها است . در ادامه ، اندازه متوسط کارایی درآمد برای ارزیابی واحد هایی با ورودی ها و خروجی های تصادفی به کار گرفته شده و مدل هایی جهت محاسبه آن در فضای تصادفی ارائه می شود. در پایان نیز، روش پیشنهادی، در یک مثال تجربی برای محاسبه اندازه متوسط کارایی درآمد مجموعهای از مناطق پستی ایران مو رد استفاده قرار میگیرد.
اکبر مرادی مجد؛ علیرضا امیرتیموری؛ سهراب کردرستمی؛ محسن واعظ قاسمی
چکیده
تحلیل پوششی داده ها (DEA) یک تخمینگر است. این تخمینگر سعی می کند که یک ارتباط بین ورودی های متعدد و خروجی های متعدد و همچنین تکنولوژی تولید را تخمین بزند. DEA واحدهای تصمیم گیرنده (DMU) را به دو بخش واحدهای کارا و واحدهای ناکارا تقسیم بندی میکند. در این صورت واحدهای کارا مرجعی برای واحدهای ناکارا خواهد بود. در مدلهای سنتیDEA بهبود کارایی ...
بیشتر
تحلیل پوششی داده ها (DEA) یک تخمینگر است. این تخمینگر سعی می کند که یک ارتباط بین ورودی های متعدد و خروجی های متعدد و همچنین تکنولوژی تولید را تخمین بزند. DEA واحدهای تصمیم گیرنده (DMU) را به دو بخش واحدهای کارا و واحدهای ناکارا تقسیم بندی میکند. در این صورت واحدهای کارا مرجعی برای واحدهای ناکارا خواهد بود. در مدلهای سنتیDEA بهبود کارایی تنها برای واحدهای ناکارا صورت می گیرد و واحدهای کارا بدون تغییر باقی می مانند. اما از آنجا که تکنولوژی تخمینزده شده همواره از تکنولوژی واقعی کوچکتر است یا به عبارت دیگر این تکنولوژی تخمینزده شده همواره زیر مجموعهای از تکنولوژی واقعی میباشد بنابراین میتوان آن را به میزان بسیار کمی گسترش داد. در نتیجه می توان راهکاری برای بهبود واحدهای کارا نیز ارایه کرد. در این مقاله الگوریتمی جهت گسترش مجموعه امکان تولید (PPS) با توجه به خواص هندسی آن و همچنین بهبود واحدهای کارا ارایه می شود. این کار به وسیلهی ساختن واحدهای مجازی خارج از مجموعه امکان تولید انجام می شود. همچنین به منظور تشریح روش مطرح شده مثالهای عددی و کاربردی ارایه میشود.